Organization of Excitable Dynamics in Hierarchical Biological Networks
نویسندگان
چکیده
منابع مشابه
Organization of Excitable Dynamics in Hierarchical Biological Networks
This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonst...
متن کاملDictyostelium discoideum: cellular self-organization in an excitable biological medium.
The dynamics which govern the establishment of pattern and form in multicellular organisms remain a key problem of developmental biology. We study this question in the case of morphogenesis during aggregation of the slime mould Dictyostelium discoideum. Here detailed experimental information allows the formulation of a mechanistic model in which the central element is the coupling of the previo...
متن کاملHierarchical organization in complex networks.
Many real networks in nature and society share two generic properties: they are scale-free and they display a high degree of clustering. We show that these two features are the consequence of a hierarchical organization, implying that small groups of nodes organize in a hierarchical manner into increasingly large groups, while maintaining a scale-free topology. In hierarchical networks, the deg...
متن کاملSpatiotemporal dynamics of networks of excitable nodes.
A network of excitable nodes based on the photosensitive Belousov-Zhabotinsky reaction is studied in experiments and simulations. The addressable medium allows both local and nonlocal links between the nodes. The initial spread of excitation across the network as well as the asymptotic oscillatory behavior are described. Synchronization of the spatiotemporal dynamics occurs by entrainment to hi...
متن کاملHierarchical Organization of Modularity in Complex Networks
Many real networks in nature and society share two generic properties: they are scale-free and they display a high degree of clustering. We show that the scalefree nature and high clustering of real networks are the consequence of a hierarchical organization, implying that small groups of nodes form increasingly large groups in a hierarchical manner, while maintaining a scale-free topology. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS Computational Biology
سال: 2008
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1000190